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SEARCH FOR A FIXED TARGET BY A MOVING OBJECT* 

G.TS. CHIKRII 

The problem of searching for a fixed target by a controlled object whose 
motion is governed by a system of ordinary differential equations or by a 
linear discrete system with a given probability density distribution of the 
initial position. The necessary conditions for the optimality of the 
control which maximizes the probability that the object's trajectory will 
reach the given target set after a fixed time, are determined. 

1. The continuous case. Let the dynamics of the controlled object be specified by 
the system 

2' = f (2, t, u), 2 E En; f (2, t, u) = co1 (ii, (z, t., U)), i = 1, 2, . . . . n (1.1) 

and let the assumptions ensuring the existence, continuability and uniqueness of the solution 
all hold /l/ The probabilistic distribution of the position of the object at the initial 
instant taof density pa(z) is given. A contro1 u (t),t E it,, 2’1 is sought in the class 0 of 
measurable functions with values from the set U, which gives the maximum probability that the 
trajectory of the system (1.1) will reach the given set &f,Mc En at a fixed finite instant 
of time T. 

We denote the distribution probability density of the object at the time t by p (t, z), 
and the maximizing probability by P. We have the formula 

P(T,fif)= Sp(t,y)dy (1.2) 
M 

The density p(t, z) satisfies the partial differential equation (the Fokker-Planck- 
Kholmogorov equation) /2/ with initial conditions 

ap ct, zYdt = -(V, f (2, tr u) p (t, 2)); p (0, 2) = po (z) s v = (dlazl, . . .I aidz,) (1.3) 

Equation (1.3) holds for any admissbile control u (.)E R and is a quasilinear first- 
order equation.with n + 1 independent variables. Its integration is equivalent /3/ to inte- 
grating the set of ordinary differential equations fl.l), and the equation 

dp (t. zYdt = -_p 0, z)fV, f (2, t, ~11 Cl.41 

Let us denote by z(t, y) the curve representing the solution of (1.1) and passing through 
the point y at the time T, i.e. z(T, y) = y. We substitute the solution obtained into (1.41, 
and solve it for the initial condition 

P (to. 2 (to? Y)) = PO (z @cl. YI) (1.5) 

Substituting the solution of problem (1.41, (1.5) into (1.21, we obtain 

P(T,M)= S~~(~(~o~y))exp{-_(V~f(~(e,~/),~~~(~)))d~}dy (1.6) 
M 1. 

If the right hand side of (1.1) is independent of the phase variable z, then formula 
(1.6) simplifies considerably (the exponential term becomes equal to unity). 

Let us investigate in more detail the case of the linear dynamics of the moving object 

z’ = AZ + u ((v~f(z~t,U))=i~l~i~= trA) (1.7) 

where A is a square n X n-matrix. Having written the solution of (1.7) in accordance with 
Cauchy's formula under the condition z (T, y) = y and for the case when to = 0, we write 
(1.6) in the form 

P(T,Mf=io(U)=efEi(--ttrA)S p,(erp(-AAT)y- (1-E) 
M 

$ exp t- A0) u (0) de) dy 

-- 
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We assume that the densify pO(z) is a continuously differentiable function, the set M 
is convex and closed, and lJ is a convex compactum. Then the set n is also convex. 

Before formulating the results, we introduce some necessary notation. The quantity V, j(z) 
will denote the vector gradient of the differentiable function j(z). For a convex set X the 
symbol Kx (x0) will denote the cone of possible directions at the point s,,~ X, i.e. a convex 
cone composed of the vectors eizX such that x(h)= z,, + hc~X for all h, 0 .< h :C h, for 
sufficiently small hI. We denote the transpose of the matrix A by AT. 

The theorem given below results from the application of the necessary conditions /4/ to 
the problem of maximizing the probability (1.8). 

Theorem 1. Let u@(.)~ '2 be a control ensuring that the function jO(u) has a maximum. 
Then the following inequality will necessarily hold: 

Proof. Since 

f exp( - A&) u,, (0,) d&) dy, Au) de > 0, VAu E Kn (uo) 
0 

the problem of maximizing the probability (1.8) is reduced to that of minimizing the function 
jo(u) over UE Q. 

The function lo(u) represents, apart from a positive coefficient, a superposition of the 
function j(x) defined on E"and the operator Au, where 

T 

f(x)= \po(exp(-AAT)y-x)dy, Aa=! exp(--Ae)u(e)de 
if ” 

The function j(z)is continuously differentiable and satisfies the Lipshitz condition with- 
in the bounded domain of its definition by virtue of the assumptions concerning the function 
pO(z) and the set U. The operator Au:L,[O,T]- E” is a Gateaux-differentiable operator (here 
L, IO, TI is a space of measurable bounded functions defined on IO, T] and representing a 

complete normed (Banach) space /5/). 
In this case we can use Theorem 3.1 of /4/ on the superposition of a quasidifferentiable 

function and a Gateaux-differentiable operator. According to this theorem the functions j (Au) 
and j,,(u) are quasidifferentiable and satisfy the Lipshitz condition. Therefore the results 
obtained in /4/ can be used, implying that the necessary conditions for the function lo(u) 
to have a minimum at the pointu,have the form of an inequality 

jo' (u,* Au)<0 (1.9) 

which must hold for all Au E Kn(u,). Here jo'(uO,Au) is a derivative of j,,(u) in the direction 
Au at the point uO. 

The same theorem implies that 

fo’ (uo, Au) = (A,‘)*V, f (Au&W (1.10) 

where A,' is the Gateaux derivative of the operator Au at the point UOI A is an operator 
conjugate to A,‘, V,j (Au,)(.) 1s a linear functional assuming at every ze E” the value (V, j 
(Au,), 4, Au is a linear bounded operator and A,’ = A. The operator A'places in 1:l corres- 
pondence to every functional q)(s)= (cp, t) defined on E", PEE"', a functional A*9 defined 
on L, IO, 2-1 such that A* q (u) = q~ (Au). Taking into account the concrete form of the operator 

Au we obtain, after some reduction, 

A*q(Blr)=i (exp(- ATo)p AU (e))& 
0 

The operator A* is applied in (1.10) to the functional V, f (Au,), therefore 

A*V,j( Auo) (Au)=+ exp(-AATe) 1 V,p+xp(- AT)y- 
in 

i 
0 

exp (- A81) uo (eljdel) dy, Au (e)) de 

(1.11) 

The formulas (1.8)-(1.11) yield the proof of the theorem. 
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P(T,M) = \ \ exP[-~~(Y,--Tu~)'+~Y~--Tu?)'l}dy,dy, (1.12) 

u&:(r) 

Example. Let us oonsider the simple motion in a plane 

y’ = II, Y = (Y1* Y*Fv YO = (YO’. Yo”)T? ‘kf -(y: /NY -YoII<e)t ilullSa 

The initial distribution is normal N(O,l) and of density 

PO(Y) = 
?/I* f ?I** 

& s=P(-'T 1 

The optimizing probability has the form 

where S,(e) is a sphere of radius e with centre at the origin of coordinates. 

The necessary condition for the control ~,=(u,~,~*)r to be optimal is 

U 1 

I 
erP 

06 
-T [(Yl + Yo' -,%I)'+ (Yz + $9” - %4'1} x 

[(YL + ~a'- %*) Aa + (Pa +YO" - TLLO’) AUS]& dy, >O 

and since the domain of integration is symmetrical, it is sufficient for the condition to be 
satisfied at the origin of coordinates. The condition is satisfied by the control u,when uOl= 

y,‘/T, uoa = yo”lT when T > 1 y. II/a. 
What we just said agrees with the following geometrical considerations. The integral in 

(1.12) represents the volume of a body cut from a cylinder by the surface I= pO(y), with the 

circle of radius e serving as the base, and will be the largest when the centre of this circle 
is placed at the origin of coordinates. 

2. The discrete case. The motion of the target is governed by the system of differ- 

ence equations 

%+I = As, + Ukr rk E E" (2.1) 

where +i.s the position of the object at the k-th step, uk is the control chosen from the set 
U at the k-th step, U is a convex compact and A is a n ,X n-matrix. The probabilistic 
distribution of the position of the target at the initial instant, of density PO(s), is given. 

We choose the controls ur, . . . . uk so as to maximize the probability of emergence of the 

target after k steps at the prescribed set M,MCE". 

According to (Z-l), when uI, . . . . uk are fixed, then the position of the target at the 
k-th step is given in terms of its initial position as follows: 

k 
zk=Akt,+ 2 Ak-‘ui 

i-1 

This yields, assuming that the matrix A-’ inverse to A exists, 

P(zkEM)= s &,(z)dz, h(+(A-1)%-i (A-‘)‘ui 
‘wu i=l 

Let us make the change of variables z = h(zr) in the integrand, and introduce the follow- 
ing vector and a matrix: 

u = co1 (ur, . . _, u,), Ak = (A-’ . . . (A-‘)“‘) 

The expression for the probability P (zk EM) now becomes 

and we seek the 

Theorem 2. 

after k steps. 

P(z~EM)=IA-~I~ Spo((A-l)*z-AA,u)dz (IA-‘l=detA-‘) 
M 

control u maximizing this expression in the set lJ"=Ux...xU. 

Le the control u,E Uk deliverthemaximum probability of successful search 

Then 

(A,r ( A-Ilk 1 v,po((il“)” 2 -A&,) dz, AU) 20 

VAu E K,,k (to, 

(2.2) 

The proof is analogous to that of Theorem 1. 

The problem of search in a game situation is of interest whenthetarget moves under the 
influence of two controls, u and V: zkcl = AZ, + uk + uk and the player with control V, VE V 
available to him tries to prevent the encounter of the target with the set M. The theorem 
remains valid in this case, but the integration in inequality (2.2) must now be carried out 

over the set M 2 AkVk where it- is the operation of geometrical subtraction of sets /6/ 

under the assumption that the set M XA,V’ is non-empty and V” is a convex compactum. 
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The author thanks B.N. Pshenichnyi for valuable comments. 
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SYNTHESIS OF THE OPTIMAL CONTROL FOR A 
LINEAR SYSTEM WITH TWO PHASE CONSTRAINTS* 

B.E. FEDUNOV and S.N. KHLEBNIKOV 

The synthesis of a control for a system described by a linear, second- 
order differential equation with constant coefficients (an oscillatory 
section) and when two constraints are imposed on the phase coordinates 
(one of them mixed) is given. The properties of the optimal phase 
trajectories are described. 

1. Formulation of the problem. The following problem arises when constructing the 
servos for measuring systems. The measuring system intended for tracking an external object 
is initially given the angular elevation of the object. On receiving the signal, the servo 
of the system turns its sighting beam in the prescribed direciton. The fastest possible rate 
of sweep of the sighting beam must be ensured, taking into account the restriction imposed on 
its rate of motion and on the maximum power demand allowed. 

Using this formulation, we will separate the problem of synthesizing the optimal response 
control ILo transforming the system 

dyldt = -2ElTy - cplTz + ii2/T2, dqldt = y (1.1) 

T>O, O<E<l 

from the arbitrary admissible points cp,y to the origin of coordinates, with the following 
constraints imposed on the control ~7 and phase coordinates: 

I U I < G, I Y I < 2P07 I ydy / dt I Q 4fi0 (1.2) 

(the second condition describes the velocity constraint and the third the power constraint). 
Next we consider the case when E e (Cl,,519 i JE/2) (see Sect.5). 

We know /l/ that the form of the optimal trajectories sought depends , undertheconstrainta 
given in (1.21, mainly on the form of the roots of the characteristic equation (1.11 

hl, 2 = x * pi, x = -_UT < 0, p = (1 - ~z)‘J*/T 

Transforming the variables 

% 
E 

v2w-1 ( ++ P’ A=-) (1.3) 

we reduce system (1.2) and the constraints (1.2) to a form suitable for our investigation 

dzldt = xz + pi3 + pu, dhldt = -pz + x6 + xu (1.4) 

I u I < 4lI UO = A&, (1.5) 

iz I Q Yuv y, = go12 (1.6) 
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